Virtual Biomechanics Laboratory

Virtual Biomechanics Laboratory

Laboratory Head: Dr. Massimo Sartori


Laboratory activities

The activities in this lab aim to create dynamic simulations of movement to understand cause-effect relationships between neuromuscular control mechanisms and the resulting movement both in human and animal models.Activities in this lab also investigate the possibility of simulating the dynamics of movement in human subjects wearing assistive devices such as orthotic and prosthetic devices. This is directed at optimizing orthotic and prosthetic designs to enhance their performance and interaction with the user.Finally, robotic bipedal systems are simulated as a means to design and test advanced motor control strategies.


Representative recent publications

Sartori M., Farina D., “Neural Data-driven Musculoskeletal Modeling for Neurorehabilitation Technologies”. IEEE Transactions on Biomedical Engineering. (2016).

Sartori M., Maculan M., Pizzolato C., Reggiani M., Farina D., “Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion”. Journal of Neurophysiology, DOI: 10.1152/jn.00989.2014 (2015).

*Schaffelhofer S., *Sartori M., Scherberger H., Farina D., “Musculoskeletal representation of a large repertoire of hand grasping actions in primates”. IEEE Transactions on Neural Systems and Rehabilitation, 23:2, 1-11 (2015)

Gonzalez-Vargas J.E., Sartori M., Dosen S., Torricelli D., Pons J.L., Farina D. “A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions”. Front. Comput. Neurosci., DOI: 10.3389/fncom.2015.00114 (2015).

Tagliapietra L., Vivian M., Sartori M., Farina D., Reggiani M. "Estimating EMG Signals to Drive NeuroMusculoSkeletal Models in Cyclic Rehabilitation Movements". In Proceeding of the 37th International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy (August 2015).

Vivian M., Tagliapietra L., Sartori M., Reggiani M., “Dynamic simulation of robotic devices using the biomechanical simulator OpenSim”, In Proceedings of the International Conference on Intelligent Autonomous Systems (IAS-13), Padova, Italy (July 2014).

Vivian M., Reggiani M., Moreno J.C., Pons J.L., Farina D., Sartori M., “A Dynamically consistent model of a motorized ankle-foot orthosis”, In proceedings of the IEEE/EMBS International Conference on Neural Engineering (NER), San Diego, California, USA (November 2013).

M. Sartori, M. Reggiani, D. Farina, DG. Lloyd. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS ONE., 2012;7(12)

M. Sartori, M. Reggiani, DG. Lloyd, E. Pagello. Modeling the Human Knee for Assistive Technologies. IEEE Transactions on Biomedical Engineering. 2012.10.1109/TBME.2012.2208746

M. Sartori, M. Reggiani, T. VD. Bogert, DG. Lloyd. Estimation of musculotendon kinematics in large musculoskeletal models using multidimensional B-Splines. Journal of Biomechanics. 2012.

R. Bortoletto, M. Sartori, F. He, E. Pagello. Simulating an Elastic Bipedal Robot Based on Musculoskeletal Modeling.  In Proceedings of Living Machines 2012.

P. Gerus, D.G. Lloyd, M. Sartori, B.J. Fregly, T.F. Besier, S.L. Delp, S.A. Banks, M.G. Pandy, D.D.D'Lima. Using subject-specific bones and implant geometry improves the accuracy in estimating the joint contact forces at the knee medial and lateral condyles. In Proceedings of ECCOMAS 2012.

D.G. Lloyd, M. Sartori, P. Gerus, D. Saxby, B.J. Fregly, T.F. Besier, S.L. Delp, S.A. Banks, M.G. Pandy, D.D.D'Lima. Computational Neuromusculoskeletal Modelling to Estimate Tissue Loading in Humans. In Proceedings of ECCOMAS 2012.



Simulating Grasping Tasks in Primates.

Bipedal Robot Simulation in OpenSim.

Dynamic Simulation of a Bipedal Robot.

Musculoskeletal Robot Simulation.